Approximation of fixed points of a strictly pseudocontractive mapping

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iterative Approximation of Fixed Points of Lipschitz Pseudocontractive Maps

Let E be a q-uniformly smooth Banach space possessing a weakly sequentially continuous duality map (e.g., `p, 1 < p < ∞). Let T be a Lipschitzian pseudocontractive selfmapping of a nonempty closed convex and bounded subset K of E and let ω ∈ K be arbitrary. Then the iteration sequence {zn} defined by z0 ∈ K, zn+1 = (1 − μn+1)ω + μn+1yn; yn = (1 − αn)zn + αnTzn, converges strongly to a fixed poi...

متن کامل

Ishikawa Iteration with Errors for Approximating Fixed Points of Strictly Pseudocontractive Mappings of Browder-Petryshyn Type

Let q > 1 and E be a real q−uniformly smooth Banach space. Let K be a nonempty closed convex subset of E and T : K → K be a strictly pseudocontractive mapping in the sense of F. E. Browder and W. V. Petryshyn [1]. Let {un} be a bounded sequence in K and {αn}, {βn}, {γn} be real sequences in [0,1] satisfying some restrictions. Let {xn} be the bounded sequence in K generated from any given x1 ∈ K...

متن کامل

Approximation of fixed points of strongly pseudocontractive mappings in uniformly smooth Banach spaces

for all x ∈ E, where 〈·,·〉 denotes the generalized duality pairing. It is well known that if E is a uniformly smooth Banach space, then J is single valued such that J(−x) = −J(x), J(tx) = tJ(x) for all t ≥ 0, x ∈ E; and J is uniformly continuous on any bounded subset of E. In the sequel we will denote single-valued normalized duality mapping by j. In the following we give some concepts. Let T :...

متن کامل

On Fixed Points of Strictly Causal Functions

We ask whether strictly causal components form well defined systems when arranged in feedback configurations. The standard interpretation for such configurations induces a fixed-point constraint on the function modelling the component involved. We define strictly causal functions formally, and show that the corresponding fixed-point problem does not always have a well defined solution. We exami...

متن کامل

Viscosity Approximation of Common Fixed Points for L-Lipschitzian Semigroup of Pseudocontractive Mappings in Banach Spaces

We study the strong convergence of two kinds of viscosity iteration processes for approximating common fixed points of the pseudocontractive semigroup in uniformly convex Banach spaces with uniformly Gâteaux differential norms. As special cases, we get the strong convergence of the implicit viscosity iteration process for approximating common fixed points of the nonexpansive semigroup in Banach...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1997

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-97-03858-6